SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
C

C static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your C code

  • All rules 315
  • Vulnerability13
  • Bug76
  • Security Hotspot19
  • Code Smell207

  • Quick Fix 19
 
Tags
    Impact
      Clean code attribute
        1. Hard-coded secrets are security-sensitive

           Security Hotspot
        2. "sprintf" should not be used

           Security Hotspot
        3. Changing working directories without verifying the success is security-sensitive

           Security Hotspot
        4. Setting capabilities is security-sensitive

           Security Hotspot
        5. Using "tmpnam", "tmpnam_s" or "tmpnam_r" is security-sensitive

           Security Hotspot
        6. Using "strncpy" or "wcsncpy" is security-sensitive

           Security Hotspot
        7. Using "strncat" or "wcsncat" is security-sensitive

           Security Hotspot
        8. Using "strcat" or "wcscat" is security-sensitive

           Security Hotspot
        9. Using "strlen" or "wcslen" is security-sensitive

           Security Hotspot
        10. Changing directories improperly when using "chroot" is security-sensitive

           Security Hotspot
        11. Using "strcpy" or "wcscpy" is security-sensitive

           Security Hotspot
        12. Using publicly writable directories is security-sensitive

           Security Hotspot
        13. Using clear-text protocols is security-sensitive

           Security Hotspot
        14. Expanding archive files without controlling resource consumption is security-sensitive

           Security Hotspot
        15. Using weak hashing algorithms is security-sensitive

           Security Hotspot
        16. Setting loose POSIX file permissions is security-sensitive

           Security Hotspot
        17. Using pseudorandom number generators (PRNGs) is security-sensitive

           Security Hotspot
        18. Hard-coded passwords are security-sensitive

           Security Hotspot
        19. Using hardcoded IP addresses is security-sensitive

           Security Hotspot

        Hard-coded secrets are security-sensitive

        responsibility - trustworthy
        security
        Security Hotspot
        • cwe
        • cert

        Because it is easy to extract strings from an application source code or binary, secrets should not be hard-coded. This is particularly true for applications that are distributed or that are open-source.

        In the past, it has led to the following vulnerabilities:

        • CVE-2022-25510
        • CVE-2021-42635

        Secrets should be stored outside of the source code in a configuration file or a management service for secrets.

        This rule detects variables/fields having a name matching a list of words (secret, token, credential, auth, api[_.-]?key) being assigned a pseudorandom hard-coded value. The pseudorandomness of the hard-coded value is based on its entropy and the probability to be human-readable. The randomness sensibility can be adjusted if needed. Lower values will detect less random values, raising potentially more false positives.

        Ask Yourself Whether

        • The secret allows access to a sensitive component like a database, a file storage, an API, or a service.
        • The secret is used in a production environment.
        • Application re-distribution is required before updating the secret.

        There would be a risk if you answered yes to any of those questions.

        Recommended Secure Coding Practices

        • Store the secret in a configuration file that is not pushed to the code repository.
        • Use your cloud provider’s service for managing secrets.
        • If a secret has been disclosed through the source code: revoke it and create a new one.

        Sensitive Code Example

        char const *mySecret = "47828a8dd77ee1eb9dde2d5e93cb221ce8c32b37";
        

        See

        • OWASP - Top 10 2021 Category A7 - Identification and Authentication Failures
        • OWASP - Top 10 2017 Category A2 - Broken Authentication
        • CWE - CWE-798 - Use of Hard-coded Credentials
        • MSC - MSC03-J - Never hard code sensitive information
          Available In:
        • SonarQube IdeCatch issues on the fly,
          in your IDE
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube ServerAnalyze code in your
          on-premise CI
          Developer Edition
          Available Since
          10.8

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use